Modified log-Sobolev inequalities and two-level concentration

نویسندگان

چکیده

We consider a generic modified logarithmic Sobolev inequality (mLSI) of the form $\mathrm{Ent}_{\mu}(e^f) \le \tfrac{\rho}{2} \mathbb{E}_\mu e^f \Gamma(f)^2$ for some difference operator $\Gamma$, and show how it implies two-level concentration inequalities akin to Hanson--Wright or Bernstein inequality. This can be applied continuous (e.\,g. sphere bounded perturbations product measures) as well discrete setting (the symmetric group, finite measures satisfying an approximate tensorization property, \ldots). Moreover, we use on group $S_n$ slices hypercube prove Talagrand's convex distance inequality, provide locally Lipschitz functions $S_n$. Some examples known statistics are worked out, which obtain correct order fluctuations, is consistent with central limit theorems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Log-sobolev Inequalities and Isoperimetry

We find sufficient conditions for a probability measure μ to satisfy an inequality of the type ∫ Rd fF ( f ∫ Rd f 2 dμ ) dμ ≤ C ∫ Rd f2c∗ ( |∇f | |f | ) dμ + B ∫ Rd f dμ, where F is concave and c (a cost function) is convex. We show that under broad assumptions on c and F the above inequality holds if for some δ > 0 and ε > 0 one has ∫ ε 0 Φ ( δc [ tF ( 1t ) Iμ(t) ]) dt <∞, where Iμ is the isop...

متن کامل

Concentration of measure and logarithmic Sobolev inequalities

© Springer-Verlag, Berlin Heidelberg New York, 1999, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...

متن کامل

Modified Logarithmic Sobolev Inequalities in Discrete Settings

Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...

متن کامل

Hypercontractivity and Log Sobolev Inequalities in Quantum Information Theory (15w5098)

S (in alphabetic order by speaker surname) Speaker: William Beckner (University of Texas at Austin) Title: Hypercontractivity and the Logarithmic Sobolev Inequality – from Quantum Field Theory to Geometric Inequalities Abstract: This talk will feature a quick historical survey of connections between the log Sobolev inequality and now classical problems in analysis, physics and probability. Spea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics

سال: 2021

ISSN: ['1980-0436']

DOI: https://doi.org/10.30757/alea.v18-31